Leishmania infantum-chagasi activates SHP-1 and reduces NFAT5/TonEBP activity in the mouse kidney inner medulla.

نویسندگان

  • Xiaoming Zhou
  • Hong Wang
  • Nancy L Koles
  • Aihong Zhang
  • Naomi E Aronson
چکیده

Visceral leishmaniasis patients have been reported to have a urine concentration defect. Concentration of urine by the renal inner medulla is essentially dependent on a transcription factor, NFAT5/TonEBP, because it activates expression of osmoprotective genes betaine/glycine transporter 1 (BGT1) and sodium/myo-inositol transporter (SMIT), and water channel aquaporin-2, all of which are imperative for concentrating urine. Leishmania parasites evade macrophage immune defenses by activating protein tyrosine phosphatases, among which SHP-1 is critical. We previously demonstrated that SHP-1 inhibits tonicity-dependent activation of NFAT5/TonEBP in HEK293 cells through screening a genome-wide small interfering (si) RNA library against phosphatases (Zhou X, Gallazzini M, Burg MB, Ferraris JD. Proc Natl Acad Sci USA 107: 7072-7077, 2010). We sought to examine whether Leishmania can activate SHP-1 and inhibit NFAT5/TonEBP activity in the renal inner medulla in a murine model of visceral leishmaniasis by injection of female BALB/c mice with a single intravenous dose of 5 × 10(5) L. chagasi metacyclic promastigotes. We found that SHP-1 is expressed in the kidney inner medulla. L. chagasi activates SHP-1 with an increase in stimulatory phosphorylation of SHP-1-Y536 in the region. L. chagasi reduces expression of NFAT5/TonEBP mRNA and protein as well as expression of its targeted genes: BGT1, SMIT, and aquaporin-2. The culture supernatant from L. chagasi metacyclic promastigotes increases SHP-1 protein abundance and potently inhibits NFAT5 transcriptional activity in mIMCD3 cells. However, L. chagasi in our animal model has no significant effect on urinary concentration. We conclude that L. chagasi, most likely through its secreted virulence factors, activates SHP-1 and reduces NFAT5/TonEBP gene expression, which leads to reduced NFAT5/TonEBP transcriptional activity in the kidney inner medulla.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKC-α contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2.

High NaCl in the renal medullary interstitial fluid powers the concentration of urine but can damage cells. The transcription factor nuclear factor of activated T cells 5 (NFAT5) activates the expression of osmoprotective genes. We studied whether PKC-α contributes to the activation of NFAT5. PKC-α protein abundance was greater in the renal medulla than in the cortex. Knockout of PKC-α reduced ...

متن کامل

Focal adhesion kinase regulates the activity of the osmosensitive transcription factor TonEBP/NFAT5 under hypertonic conditions

TonEBP/NFAT5 is a major regulator of the urinary concentrating process and is essential for the osmoadaptation of renal medullary cells. Focal adhesion kinase (FAK) is a mechanosensitive non-receptor protein tyrosine kinase expressed abundantly in the renal medulla. Since osmotic stress causes cell shrinkage, the present study investigated the contribution of FAK on TonEBP/NFAT5 activation. Osm...

متن کامل

High NaCl–induced activation of CDK5 increases phosphorylation of the osmoprotective transcription factor TonEBP/OREBP at threonine 135, which contributes to its rapid nuclear localization

When activated by high NaCl, tonicity-responsive enhancer-binding protein/osmotic response element-binding protein (TonEBP/OREBP) increases transcription of osmoprotective genes. High NaCl activates TonEBP/OREBP by increasing its phosphorylation, nuclear localization, and transactivating activity. In HEK293 cells, mass spectrometry shows phosphorylation of TonEBP/OREBP-S120, -S134, -T135, and -...

متن کامل

Modulation of TonEBP activity by SUMO modification in response to hypertonicity

TonEBP is a DNA binding transcriptional enhancer that enables cellular adaptation to hypertonic stress by promoting expression of specific genes. TonEBP expression is very high in the renal medulla because local hypertonicity stimulates its expression. Given the high level of expression, it is not well understood how TonEBP activity is modulated. Here we report that TonEBP is post-translational...

متن کامل

TonEBP stimulates multiple cellular pathways for adaptation to hypertonic stress: organic osmolyte-dependent and -independent pathways.

TonEBP (tonicity-responsive enhancer binding protein) is a transcription factor that promotes cellular accumulation of organic osmolytes in the hypertonic renal medulla by stimulating expression of its target genes. Genetically modified animals with deficient TonEBP activity in the kidney suffer from severe medullary atrophy in association with cell death, demonstrating that TonEBP is essential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 307 5  شماره 

صفحات  -

تاریخ انتشار 2014